The following is a list of the known perfect numbers, including the Mersenne prime exponent p which generates them with the expression 2p−1× (2p − 1) where 2p − 1 is a Mersenne prime. All even perfect numbers are of this form. It is not known whether there are any odd perfect numbers. As of 2011[update] there are 47 known perfect numbers in total.[1][2][3]
Rank | p | Perfect number | Digits | Year | Discoverer |
---|---|---|---|---|---|
1 | 2 | 6 | 1 | Known to the Greeks[4] | |
2 | 3 | 28 | 2 | Known to the Greeks | |
3 | 5 | 496 | 3 | Known to the Greeks | |
4 | 7 | 8128 | 4 | Known to the Greeks | |
5 | 13 | 33550336 | 8 | 1456 | First seen in the medieval manuscript, Codex Lat. Monac.[5] |
6 | 17 | 8589869056 | 10 | 1588 | Cataldi |
7 | 19 | 137438691328 | 12 | 1588 | Cataldi |
8 | 31 | 2305843008139952128 | 19 | 1772 | Euler |
9 | 61 | 265845599…953842176 | 37 | 1883 | Pervushin |
10 | 89 | 191561942…548169216 | 54 | 1911 | Powers |
11 | 107 | 131640364…783728128 | 65 | 1914 | Powers |
12 | 127 | 144740111…199152128 | 77 | 1876 | Lucas |
13 | 521 | 235627234…555646976 | 314 | 1952 | Robinson |
14 | 607 | 141053783…537328128 | 366 | 1952 | Robinson |
15 | 1279 | 541625262…984291328 | 770 | 1952 | Robinson |
16 | 2203 | 108925835…453782528 | 1327 | 1952 | Robinson |
17 | 2281 | 994970543…139915776 | 1373 | 1952 | Robinson |
18 | 3217 | 335708321…628525056 | 1937 | 1957 | Riesel |
19 | 4253 | 182017490…133377536 | 2561 | 1961 | Hurwitz |
20 | 4423 | 407672717…912534528 | 2663 | 1961 | Hurwitz |
21 | 9689 | 114347317…429577216 | 5834 | 1963 | Gillies |
22 | 9941 | 598885496…073496576 | 5985 | 1963 | Gillies |
23 | 11213 | 395961321…691086336 | 6751 | 1963 | Gillies |
24 | 19937 | 931144559…271942656 | 12003 | 1971 | Tuckerman |
25 | 21701 | 100656497…141605376 | 13066 | 1978 | Noll&Nickel |
26 | 23209 | 811537765…941666816 | 13973 | 1979 | Noll |
27 | 44497 | 365093519…031827456 | 26790 | 1979 | Nelson&Slowinski |
28 | 86243 | 144145836…360406528 | 51924 | 1982 | Slowinski |
29 | 110503 | 136204582…603862528 | 66530 | 1988 | Colquitt&Welsh |
30 | 132049 | 131451295…774550016 | 79502 | 1983 | Slowinski |
31 | 216091 | 278327459…840880128 | 130100 | 1985 | Slowinski |
32 | 756839 | 151616570…565731328 | 455663 | 1992 | Slowinski&Gage |
33 | 859433 | 838488226…416167936 | 517430 | 1994 | Slowinski&Gage |
34 | 1257787 | 849732889…118704128 | 757263 | 1996 | Slowinski&Gage |
35 | 1398269 | 331882354…723375616 | 841842 | 1996 | Armengaud, Woltman, et al. |
36 | 2976221 | 194276425…174462976 | 1791864 | 1997 | Spence, Woltman, et al. |
37 | 3021377 | 811686848…022457856 | 1819050 | 1998 | Clarkson, Woltman, Kurowski, et al. |
38 | 6972593 | 955176030…123572736 | 4197919 | 1999 | Hajratwala, Woltman, Kurowski, et al. |
39 | 13466917 | 427764159…863021056 | 8107892 | 2001 | Cameron, Woltman, Kurowski, et al. |
40 | 20996011 | 793508909…206896128 | 12640858 | 2003 | Shafer, Woltman, Kurowski, et al. |
41 | 24036583 | 448233026…572950528 | 14471465 | 2004 | Findley, Woltman, Kurowski, et al. |
42 | 25964951 | 746209841…791088128 | 15632458 | 2005 | Nowak, Woltman, Kurowski, et al. |
43 | 30402457 | 497437765…164704256 | 18304103 | 2005 | Cooper, Boone, Woltman, Kurowski, et al. |
44 | 32582657 | 775946855…577120256 | 19616714 | 2006 | Cooper, Boone, Woltman, Kurowski, et al. |
45 | 37156667 | 204534225…074480128 | 22370543 | 2008 | Elvenich, Woltman, Kurowski, et al. |
46 | 42643801 | 144285057…377253376 | 25674127 | 2009 | Strindmo, Woltman, Kurowski, et al. |
47 | 43112609 | 500767156…145378816 | 25956377 | 2008 | Smith, Woltman, Kurowski, et al. |
The displayed ranks are among those perfect numbers which are known as of 2011. Some ranks may change later if smaller perfect numbers are discovered. It is known there is no odd perfect number below 10300. GIMPS reports that on 1 December 2011 the search for Mersenne primes (and thereby even perfect numbers) became exhaustive up to the 41st above.[6]